

PORTO RIAT+ APPLICATION

Hélder Relvas Paulo Ana Isabel Miranda

Department of Environment and Planning,

University of Aveiro

Ispra, 2014

The challenge

The Porto region is one of the several EU urban areas that had to develop and implement AQPs to reduce particulate matter .

• The AQPs were designed based on a scenario approach and using an air quality model.

 To do an optimization approach based on the RIAT+ IA tool

Northern Region

21 Air quality monitoring stations

PM10 emissions by sector in the Northern Region

Measures	Traffic measures Production processes Residential combustion	Costs (€)
M1	Introduction of low-emission vehicles for transport of passengers and goods	13,668,042.45
M2	Improvement of public transport network	147,928,092.20
M3	Car sharing	
M4	Renewal of the fleet of taxis and vehicles for waste collection	525,186.00
M5	Decrease the percentage of heavy goods vehicles in circulation	
M6	Car parks peripheral construction	
M7	Strengthening the monitoring of illegal parking	4,800.00
M8	Low Emission Zones (LEZ)	
M 14	Cut-off streets to traffic	14,316,996.19
M15	Introduction of public fueling stations for natural gas	
M16	Promote the implementation / improvement of industrial air cleaners	12,500,000.00
M17	Enhanced surveillance of stationary sources	67,500.00
M19	Emissions reduction from residential combustion	
M20	Reduction of particle emissions from agriculture and forests	1,772.00
M21	Street sweeping and washing	465,821.00
M22	Dust emissions reduction on construction sites	
M24	Environmental education and recomendation	144,050.00
	Total	189,622,259.84

Some measures ...

Certified combustion appliances with PM emissions reduction

Improvement of industrial PM retention systems

Reinforcement of the inspection of industry sources

Diesel Particle filter

Public transportation with lower emission and improvement of public transport network

Spatial differences between base and reduction scenarios (2004) – annual mean

140000 150000 160000 170000 180000 190000 200000 210000 220000 230000 240000

Application of the integrated assessment tool RIAT + to Porto urban area

TAPM (The Air Pollution Model)

- A 3D prognostic meteorological and chemical transport integrated modelling system, with a Lagrangian particle model option for point source dispersion.
- CSIRO Marine and Atmospheric Research
- Pollutants: SO₂, NOX, NO₂, PM10, PM2.5, O₃

RIAT+ Application: Simulation domain

Creation of simulation scenarios

Scenarios	NOXa	VOXa	NH3a	PMa	SO2a	NOXp	VOCp	NH3p	РМр	SO2p
0	В	В	В	В	В	В	В	В	В	в
The letters B, L and H used in the table have the following meaning: - B: Current Legislation (CLE) emissions + 15% ; - L: average of Current Legislation (CLE) and Maximum Feasible Reduction (MFR) - H: Maximum Feasible Reduction (MFR) at 2020.								B B B B B B B		
8	н	н				В	в	В	В	в
9	н		н	н	н	В	В	В	В	В
10	Н					В	В	В	В	В
11	н		Н		н	В	В	В	В	В
12	В	В	В	В	В	L	L	L	L	L
13	В	В	В	В	В	н	н	н	н	н
14	В	В	В	В	В	н			н	н
15	В	В	В	В	В					н
16	В	В	В	В	В	н				н
17	н	Н	Н	Н	н	Н	Н	Н	Н	Н
18	н		н	н	н	н			н	н
19					н					н
20	н		н		н	н				н
21	н	Н				н	Н			

Some Results — annual mean PM10 (µg.m⁻³)

RIAT+ IMPLEMENTATION

- To implement RIAT+ 4 main setting are needed:
- Domain
- Measures DB
- Emission Inventory
- S/R functions

RIAT+: domain

🕻 Domain			
Domain Configuration			
Name 1	•	Delete New Save	
Grid Information			
SW corner X (UTM, m)	N" X cell		
SW corner Y (UTM, m)	N" Y cell		
Cell size (km)	UTM zone	Ν	
Domain Maps			
📾 Domain			
🚭 Add Subdomain	Population		
Remove Subdomain			
External Cost			
		Help OK	

Status: OK

Population on the gridded domain

RIAT+: Technology DB

Status: OK

RF Measures DB	
Measures DB Configuration	
Name xxx	Delete New Save
📾 Measures DB	
Add / Edit Measures Edit Activity	Help OK

- It has been downloaded from IIASA web site (<u>http://gains.iiasa.ac.at/gains/EUN/index.login?logout=1</u>)
- The reference scenario is «TSAP» of March 2013, Portugal
- The technology database is made up of 420 «triplet» (sector-activity-technology) and of 130 (sector-activity).
- In a second phase non-technical measures will be included

RIAT+: Inventory

RIAT+: S/R

20 Simulation scenarios

Status: OK

	RADIUS (NUMBER OF CELLS)	FUNCTIONS
PM10	4	Logsig - purelin
PM25	4	Logsig - purelin
NO2	14	Tansig - purelin
AOT40	14	Logsig - tansig
SOMO35	14	Logsig - tansig
MAX8H	14	Logsig - purelin

PM10 – net

 $NO_2 - net$

µg/m³

INPUT

Difficulties

Disaggregation and mapping

Sometimes it is necessary to make approximations and most of the activity mapping work is "manual", comparing case by case.

Technology DB

In GAINS database the MFR Application Rate values are smaller than CLE application rate or is set to zero.

Future work

• Run RIAT+ configurations and analyze the results

Obrigado! Thank you! <u>www.ua.pt/gemac</u> helder.relvas@ua.pt