

RIAT+ and Emilia Romagna Air Quality Regional Plan

Stortini Michele (ARPA-EMR)

Emilia Romagna region

Emilia Romagna region is geographically heterogeneous and complex and includes hills, mountains, valleys, coastal areas and a relevant part of the Po river plain. The Po Valley is surrounded by the Alps in the North, the Apennine mountains in the South and bordered by Adriatic Sea in the East. The frequently stagnation of air masses often leads during winter to very strong air pollution episodes and in summer to high ozone values

Air quality in Emilia Romagna

Exceedance of air quality targets

Contribution to PM10 and NO₂ in Emilia Romagna

The roadmap to the Air Quality plan (PAIR2020)

- Issue of the Guidelines by the Regional Government (giunta regionale) (December 2012)
- Institution of a Task force (RER ARPA) preparing the technical documentation
 - 1. Framework (quadro conoscitivo)
 - 2. Preliminary action plan (documento preliminare, july 2013)
 - 3. Preliminary Environmental assessment and monitoring plan (VAS)
- Presentation and approval of the technical documentation by government (July 2014)
- Submission to the Assembly (assemblea legislativa) end of July2014)

http://ambiente.regione.emilia-romagna.it/aria-rumore-elettrosmog/temi/pair2020

We try to ask to the question

•What are the emissions reductions needed to achieve the air quality target?

- •How we can achieve this target?
- •Is it possible?

Input data for RIAT+

- Emission inventory with areal and point emissions on the defined domain
- "Mapping" between GAINS database and inventory classification (SNAP)
- Definition of non-technical measures
- Preparation of technical/non-technical measure data base
- Set up of several emission scenarios to define all possible evolutions
- Simulations with chemical transport model (NINFA system)

Regional Emission Inventory

- The regional inventory of atmospheric emissions has been undertaken by ARPA Emilia Romagna on behalf of the Emilia Romagna Region, with reference to the year 2010 using INEMAR
- INEMAR (INventario di EMissioni in ARia Air Emission Inventory) is a database developed in order to carry out an atmospheric emission inventory, that is say, to estimate emissions of different pollutants for different activities (heating, road transport, agriculture, industry, etc.)

Emilia Romagna inventory 2010

- Combustion in energy and transformation industries
- Non-industrial combustion plants
- Combustion in manufacturing industry
- Production processes
- Extraction and distribution of fossil fuels and geo. energy
- Solvent and other product use
- Road transport
- Other mobile sources and machinery
- Waste treatment and disposal

```
Agriculture
```

"Mapping" between GAINS and SNAP inventory classification

SNAP				GAINS		
MS	SECT	ACT	FUEL	SECT	ACT	
Non industrial combustion	Residential	Boiler <50 Kw	Natural gas	DOM	GAS	
Agriculture	Organic waste water	Pig	No Comb	AGR_PIG	PL	
Road Trasport	Car	Urban	Gasoline	TRA_RD_L D4C_URBA N	GSL	

The structure of the "action data base"

2226 actions, of which:

2146 "technical "(GAINS) 80 "non technical/efficiency measure"

For each measure it is defined:

- 1. The Removal efficiency (RE) for each pollutant (i.e. NOx,PM10, etc.)
- 2. The Application rate (AR) for different years (i.e.2010,2015, 2020, etc)
- 3. The Maximum application rate
- 4. The Unit Cost
- 5. Several flags useful for the tool

Definition of "non-technical "(energy/efficiency) actions

Domestic:

- •thermal insulation (roof and walls)
- •Heat pump
- •High efficiency boilers
- •Solar panels
- •Double glass
- •Thermostatic valves

Traffic:

Cycling line
TLZ
Velocity Reduction
Electric car
Electric bike

Energy production:

HydroelectricWindPhotovoltaic

	Example of measure defined in the data					
base						
SECT		ACT	ТЕСН			
Agriculture	e:Livestock pigs	Pigs - liquid (slurry) systems	Combination of LNF_BF_CS_LNA			
HDV – trucks		Medium distillates	EURO V on heavy duty diesel road vehicles			
Industry: Comb. in boilers		Natural gas	No control			
LDV: cars and smallbuses		LPG	EURO 6			
LDV: light comm. trucks		Medium distillates	EURO 4			
Motorcycles with 4-st. en.		Gasoline	Stage 2 control on motorcycles			
Ot. Tran.: agriculture		Medium distillates	Stage 3B control			
Residential Fireplaces		Fuelwood direct	Fireplace improved			
Residential, commercial		Natural gas	Heat pump			
Residentia	al, commercial	Natural gas	Insulation of walls and floors			
Residentia	al, commercial	Natural gas	Vacuum-sealed solar thermal panels			
Residentia	al, commercial	Natural gas	Replacement of single glazing with double glazing			

NINFA Air quality system

Model simulation setup for Artificial Neural Network (ANN)

•Meteo: COSMO-I7

•BC: Prev'air CLE 2020

•Emission inventory: Regional Inventory, National Inventory, European Inventory (MACC project)

•CTM:CHIMERE, version 2008c

•Horizontal resolution: 5km

•Vertical level:8

•Domain:128*82

ANNs Emission Scenarios

Applying different emission control strategies (using emissions values varying between CLE - current legislation and MFR – maximum feasible reduction), a number of 12 alternative emission reduction scenarios have been simulated.

	AREAL AND POINT EMISSIONS			OUTSIDE REGIONAL DOMAIN		
SCENARIOS	NOX	voc	NH3	РМ	SO2	
0	В	В	В	В	В	B2 (cle2020)
1	L	L	L	L	L	B2 (cle2020)
2	H	H	Н	H	Н	B2 (cle2020)
3	Н	L	L	L	L	B2 (cle2020)
4	L	Н	L	L	L	B2 (cle2020)
5	L	L	Н	L	L	B2 (cle2020)
6	L	L	L	H	L	B2 (cle2020)
7	L	L	L	L	Н	B2 (cle2020)
8	Н	Н	L	L	L	B2 (cle2020)
9	Н	L	Н	Н	Н	B2 (cle2020)
10	Н	L	Н	L	L	B2 (cle2020)
11	Н	L	Н	L	Н	B2 (cle2020)

B represents the 2015 CLE legislation incremented of 15%, **H** represents the 2015 MFR reduced of 15%, **L** represents the average reduction between **B** and **H**, and **B2** represents the 2020 current legislation boundary conditions used as input for the Chemical Transport Model

Emissions scenarios

NOx: base scenario-high reduction scenario (tons/year)

PM10: base scenario-high reduction scenario (tons/year)

Create new project / Load saved project Name (em_domain Description Domain Emission inventory	Coline Coline
Domain Emission inventory	Ď
Measure SR functions Run project Project output	

RIAT+ can be apply to different subdomain

RIAT+ output

OUTPUT: an example from E-R PAIR2020

The target scenario PAIR2020

Ex. 2 main actions to reduce NOx emissions

1 - Road transport	action (road transport)	emission reduction (NOx tons)	% respecto to emission reduction target
and	Heavy duty vehicles - trucks	2705.2	38%
other mobile 2- Industry 3 - Energy	Light duty vehicles: cars and small buses with 4-stroke engines - Highway	143.7	2%
	Light duty vehicles: cars and small buses with 4-stroke engines - Urban	76.8	1%
	engines - Extraurban Light duty vehicles: light commercial trucks with 4-stroke	563	8%
	engines	522.5	7%
	Motorcycles with 4-stroke engines	14.9	0.2%
	Motorcycles, mopeds and cars with 2-stroke engines	6.8	0.1%

Ex. 1 Main actions to reduce NH3 emissions

action	emission reduction (NH3 tons)	% respecto to emission reduction target
Agriculture: Livestock - dairy cattle		
Dairy cows - liquid (slurry) systems		
Combination of LNF_CS_LNA	3318.8	14%
Combination of LNF_SA_LNA	949.3	4%
Agriculture: Livestock - other cattle		
Other cattle - solid systems		
Low ammonia application; high efficiency	1711.3	7%
Agriculture: Livestock - pigs		
Pigs - liquid (slurry) systems		
Combination of LNF_BF_CS_LNA	4613.9	20%
Agriculture: Livestock - poultry		
Laying hens		
Combination of LNF_BF_CS_LNA	652.1	3%
Other poultry		
Combination of LNF_SA_LNA	1842	8%
Fertilizer use - urea		
No fuel use		
Urea substition	9846.5	43%

low nitrogen feed

- Covered outdoor storage of manure; mean efficiency
- low ammonia applictaion mean efficiency

bio filtration

LNF

CS

LNA

BF

SA

animal house adaption

Domestic sector (NTM)

	Removal efficiency NOx	Maximum Application rate		Domestic NOx Emission Reduction
Buildings insulation	8.8	64	\rightarrow	6%
Heat Pump	68.0	32	\rightarrow	22%
High efficiency Boilers	21.6	64	\rightarrow	14%
Thermostatic valves	10.8	64	\rightarrow	7%
Solar Heating	11.6	35	\rightarrow	4%

Postprocessing PM10 output

Meteorology variability has been estimated from multiannual model simulation
Sub grid variability has been estimated comparing the model basecase output with higher resolution interpolation of observed data performed with kriging algorithm

The equivalent limit value (ELV) for PM10

- The annual ELV is set to 28 (instead of 40) microg/m3.
- we suppose that the respect of the ELV for PM10 will guarantee the respect of the annual LV for PM2.5 and NO2 (except for hot spots)

Base case scenario (2010)

PM10 exceedances of the daily mean

PM10 exceedances of the daily mean

venna

venna

Total emissions for each scenario over Emilia-Romagna (tons)

PAIR2020 Measure

	EMISSION REDUCTION RESPECT TO (ton(year)			T TO CLE	
TRAFFIC	NOx	cov	NH3	PM10	SO2
City traffic limitation	571	117	3	48	5
Urban Pedestrian zone, low emission zones, bycicle path	1942	395	7	149	23
Vehicle fleet	272	24		1	1
Pubblic trasport	172	43		26	
Trasporti: riduzione flussi autoveicoli su strade extraurbane e piccole aree urbane	1310	342	37	275	35
Truck	1497	39	2	93	18
Ecodriving	495	18	2	16	3
RESIDENTIAL					
Efficiency Building	958	1812		338	135
Fireplace	52	4546		701	
Use of natural gas	121	-11		26	546
Temperature reduction, information population, etc	454	821	12	162	90
AGRICOLTURE					
Livestock			4699		
Fertilizer			4657		
Off road	5526			934	
INDUSTRY					
Efficiency Building	334	58		25	285
BAT	601	1227		58	
Fuel substitution (heavy fuel oil with medium oil)	130	6		146	1490
NATIONAL MEASURe					
Motorway	1457	10		50	
(Emission reduction respect to CLE2020)	15891	9448	9418	3047	2631

Conclusion and remarks

- The RIAT+ tool implemented on Emilia-Romagna provide a wide set of information and data that support the analysis of the pollution factors responsible for the exceedance and of the possible measures for the improvement of air quality:
 - costs effectiveness analysis is used to set the emission reduction target for the AQ plan;
 - the technical and not technical (energy) measure has been prepared for Emila Romagna helps to define and evaluate the most effective actions;
 - the source-receptor model is used for a fast screening of the effects on air quality of the selected set of actions and the results confirm that the neural network system ensures very high capability to simulate the non linear source-receptor relationship between AQIs and the emission of their precursors.
 - the emissions output help to prepare the input data for the detailed evaluation of the selected scenario by the CTM (NINFA)
- RIAT+ has been apply to define the regional action plan and can be usefull to estimate the effectiveness of measure contained in the plan.